
OCaml Trader Patrick Flanagan
Jane Street

(HT Yaron Minsky, Marcin Sawicki)

Agenda

❖ Functional programming and OCaml

❖ Jane Street and people (including you!)

❖ Motivating examples

Functional Programming

Traditionally (John Hughes):  

❖ no side effects (purity)

❖ higher-order functions and functors

❖ laziness

Classical Applications

❖ compilers

❖ AI (Lisp)

❖ formal validation of code

❖ automatic theorem proving

Syntax Tree
module Variable : sig type t end = struct

 type t = string

end

module Expression = struct

 type t =

 | Const of int

 | Var of Variable.t

 | Neg of t

 | Sum of t * t

 | Product of t * t

end

let five_plus_six = Sum ((Const 5), (Const 6))

(* 5 + 6 *)

Syntax Tree

module Bool_expression = struct

 type t =

 | Less_or_equal of Expression.t * Expression.t

 | Not of t

 | And of t * t

 | Or of t * t

end

let between_four_and_six =

 And (Less_or_equal (Const 4, Var “foo”), Less_or_equal (Var “foo”, Const 6))

(* 4 <= foo && foo <= 6 *)

Syntax Tree

module Instruction = struct

 type t =

 | Assign of Variable.t * Expression.t

 | Print of Expression.t

 | While of Bool_expression.t * t

 | If_then_else of Bool_expression.t * t * t

 | Block of t list

end

Syntax Tree
let prog =

 Block [

 Assign (“foo”, Const 5);

 While (Less_or_equal (Const 1, Var “foo”),

 (Block [

 Print (Var “foo”);

 Assign (Var “foo”, (Sum (Var “foo”, Neg (Const 1))));

])]

;;

(* { foo = 5;

 while (1 <= foo); {

 print foo;

 foo = foo + (-1);

 }

 }

*)

Algebraic Datatypes

❖ available in languages like OCaml, SML, and Haskell

❖ products (tuples and records) are like C records

❖ variants are like C unions

❖ but they compose better

Who am I?

What does Jane Street do?
❖ Proprietary quantitative trading firm

❖ Trading (buying and selling) financial securities

❖ Focusing on technology, using OCaml

❖ Making markets (“market making”, both buying and selling)

❖ Engaging in arbitrage

Market Participants

❖ investor

❖ speculator

❖ market maker

❖ arbitrageur

Market Participants

❖ investor

❖ speculator

❖ market maker

❖ arbitrageur

Our Needs

❖ correctness

❖ speed (but not for speed’s sake)

❖ correctness!!!

❖ agility of code writing and modification

❖ code must be easy to read (correctness!!!!)

Functional Programming

Traditionally (John Hughes):  

❖ no side effects (purity)

❖ higher-order functions and functors

❖ laziness

Functional Programming

Our take (Yaron Minsky):  

❖ expressive static types (with inference)

❖ higher-order functions and functors

❖ no side effects (purity)
.

.

.

❖ laziness

Laziness

❖ Peano numbers

❖ terminate evaluation early

❖ optimize compilation of programs, but…

❖ unpredictable (non-intuitive) evaluation

Purity

❖ all context / environment readily apparent (readability)

❖ object-oriented programming

Higher Order Functions

❖ compose control structures (compose code vs. data)

❖ avoid code duplication (fewer bugs)

❖ increase complexity without decreasing readability

fold
// sum the elements in a list

int sum(int array list) {

 sum = 0;

 for i in list; do

 sum = sum + i;

 done;

 return sum;

}

fold

list = [1; 2; 3; 4];

printf “%d\n%!” (sum(list));

// “10”

fold
// multiply the elements in a list

int product(int array list) {

 product = 1;

 for i in list; do

 product = product * i;

 done;

 return product;

}

fold

list = [1; 2; 3; 4];

printf “%d\n%!” (product(list));

// “24”

fold
// multiply a list

int product(int array list) {

 product = 1;

 for i in list; do

 product = product * i;

 done;

 return product;

}

// sum a list

int sum(int array list) {

 sum = 0;

 for i in list; do

 sum = sum + i;

 done;

 return sum;

}

fold
// fold over a list

int fold(int array list, int init, fun operate) {

 accumulator = init;

 for i in list; do

 accumulator = operate(accumulator, i);

 done;

 return accumulator;

}

fold
// fold over a list

list = [1;2;3;4]

sum(list) = fold(list, 0, (+)) // = 10

product(list) = fold(list, 1, (*)) // = 24

concat(list)

 = fold(list, “”, (fun (s,i) ->

 s ^ int_to_string i))

 // = “1234”

Expressive Static Types

❖ real life (not just in finance) is complex and full of
special cases

❖ useful code models the real world well

❖ variant types are a helpful tool to achieve this

‘a option

let div ~numerator ~denominator =

 (* throws DivisionByZeroExn *)

 numerator / denominator

‘a option

type 'a option =

 | Some of 'a

 | None

‘a option

let safe_div ~numerator ~denominator =

 if denominator <> 0 then

 Some (numerator / denominator)

 else

 None

‘a option

val safe_div

 : numerator:int

-> denominator:int

-> int option

‘a option

let print_div ~numerator ~denominator =

 match safe_div ~numerator ~denominator with

 | Some x -> Printf.printf "result = %d\n" x

 | None -> Printf.printf "error: division by 0\n"

trading
 type dir = Buy | Sell

 let sign = function

 | Buy -> 1

 | Sell -> -1

 type t =

 | Ack

 | Out

 | Fill of int * dir

trading

 let update_position t position =

 let delta =

 match t with

 | Ack

 | Out -> 0

 | Fill (size, dir) -> sign dir * size

 in

 position + delta

trading
 type dir = Buy | Sell

 let sign = function

 | Buy -> 1

 | Sell -> -1

 type t =

 | Ack

 | Out

 | Fill of int * dir

trading
 type dir = Buy | Sell

 let sign = function

 | Buy -> 1

 | Sell -> -1

 type t =

 | Ack

 | Out

 | Fill of int * dir

 | Bust of int * dir

trading

 let update_position t position =

 let delta =

 match t with

 | Ack

 | Out -> 0

 | Fill (size, dir) -> sign dir * size

 in

 position + delta

trading

 let update_position t position =

 let delta =

 match t with

 | Ack

 | Out -> 0

 | Fill (size, dir) -> sign dir * size

 (* compile error--a missing case:

 Warning 8: this pattern-matching is not exhaustive.

 Here is an example of a value that is not matched:

 Bust (_, _)

 File "kod.ml", line 148, characters 6-21:

 *)

 in

 position + delta

trading

 let update_position t position =

 let delta =

 match t with

 | Ack

 | Out -> 0

 | Fill (size, dir) -> sign dir * size

 in

 position + delta

trading

 let update_position t position =

 let delta =

 match t with

 | Ack

 | Out -> 0

 | Fill (size, dir) -> sign dir * size

 | Bust (size, dir) -> sign dir * -size

 in

 position + delta

network connection status (bad)
 type state =

 | Connecting

 | Connected

 | Disconnected

 type t = {

 state: state;

 server: Inet_addr.t;

 last_ping_time: Time.t option;

 last_ping_id: int option;

 session_id: string option;

 when_initiated: Time.t option;

 when_disconnected: Time.t option;

 }

network connection status (good)
 type connecting = {

 when_initiated: Time.t;

 }

 type connected = {

 last_ping: (Time.t * int) option;

 session_id: string;

 }

 type disconnected = {

 when_disconnected: Time.t;

 }

 type state =

 | Connecting of connecting

 | Connected of connected

 | Disconnected of disconnected

 type t = {

 state: state;

 server: Inet_addr.t;

 }

return value (C)
public static int binarySearch(int[] a, int term)

Returns:

index of the search term, if it is contained in the array; otherwise, (-(insertion
point) - 1). The insertion point is defined as the point at which the term would be
inserted into the array: the index of the first element greater than the term, or
a.length if all elements in the array are less than the specified term. Note that this
guarantees that the return value will be >= 0 if and only if the term is found.

return value (OCaml)
val binary_search:

 'a array

 -> term:'a

 -> [`Found_at of int

 | `Not_found__insertion_point_at of int]

return value (OCaml)

assert (

 match binary_search a ~term with

 | `Found_at idx -> a.(idx) = term

 | `Not_found__insertion_point_at idx ->

 (idx = 0 || a.(idx - 1) < term)

 && (idx = Array.length a || a.(idx) > term))

other interesting topics

❖ Async

❖ Incremental / Paralink

❖ Zero

❖ Iron

❖ much code
❖ https://janestreet.github.io/

❖ “core” library
❖ https://github.com/janestreet/core

❖ async
❖ https://realworldocaml.org/v1/en/html/concurrent-programming-with-async.html

❖ incremental
❖ https://blogs.janestreet.com/introducing-incremental/

Further Reading

janestreet.com/apply

We’re hiring!

